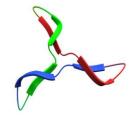
Development of a Novel Biphasic CO₂ Absorption Process with Multiple Stages of Liquid–Liquid Phase Separation for Post-Combustion Carbon Capture


(DOE/NETL Agreement No. DE-FE0026434)

Yongqi Lu

Illinois State Geological Survey, Prairie Research Institute University of Illinois at Urbana-Champaign

2016 NETL CO₂ Capture Technology Meeting Pittsburgh PA • August 11, 2016

1

Project Overview

Project objectives

- Developing new biphasic solvents
- Demonstrate phase separation-coupled CO₂ absorption process
- Generate and assess engineering and scale-up data

Project duration

> 10/1/15 – 9/30/18 (36 months for two BPs)

Funding profile

DOE funding	1,999,996
BP1	1,079,663
BP2	920,333
Cost share (Cash & In-kind)	501,052
BP1	269,920
BP2	231,132
Total	2,501,048

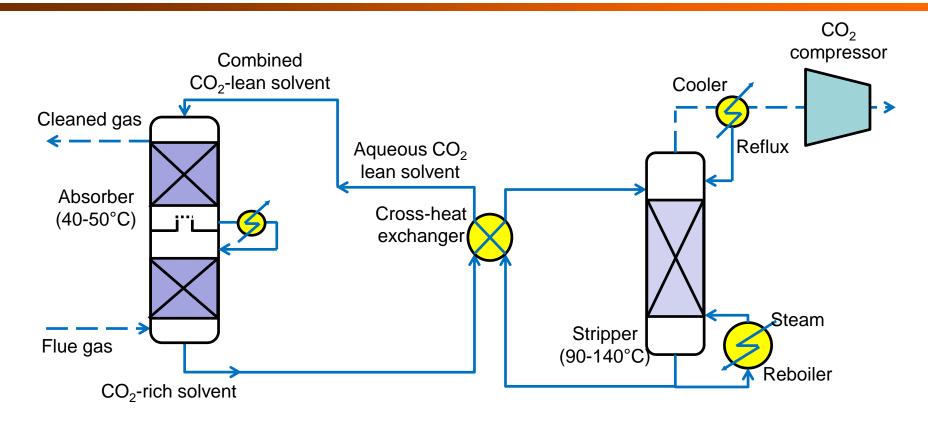
Project Participants

University of Illinois

- Illinois State Geological Survey
 - Solvent screening & development
 - Solvent equilibria, kinetics & properties measurements
 - Absorption and desorption column testing

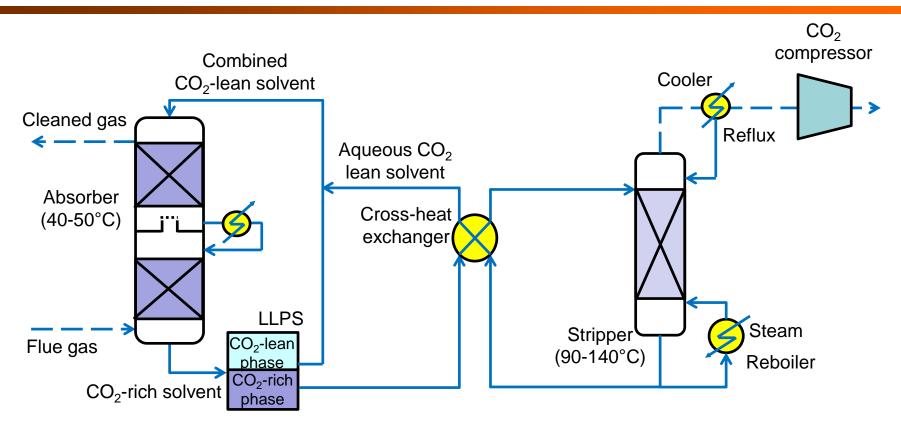
Illinois Sustainable technology Center

• Evaluation of solvent stabilities and corrosion impact


Applied Research Institute

Molecular dynamics simulation study for solvent screening

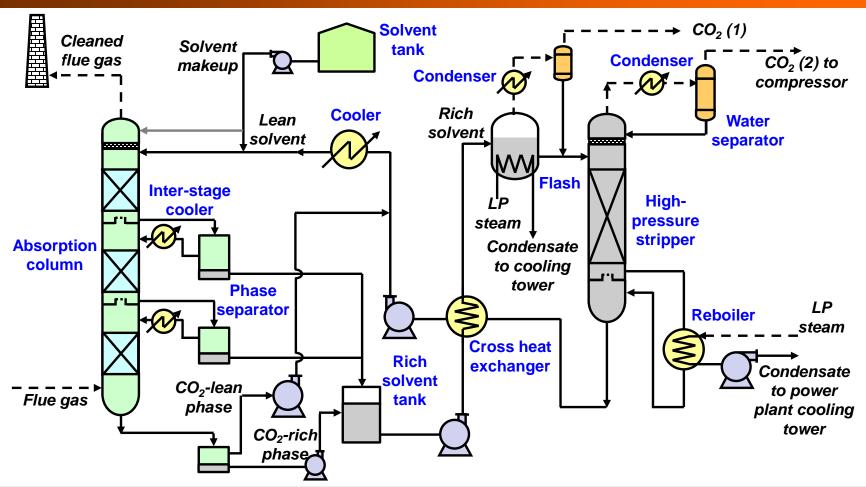
Trimeric Corporation


Process feasibility and TEA analysis

Conventional Monophasic Absorption Approach

Conventional CO₂ Absorption Process (e.g., MEA)

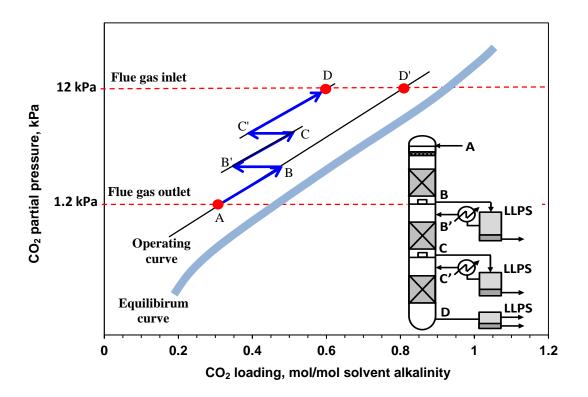
Advantages of Biphasic CO₂ Absorption Processes



Conceptual of Biphasic Absorption Processes by Other Developers

Impacts on stripper:

- Reduced equipment size due to reduced mass of solvent to be regenerated in stripper
- Reduced energy use and compression cost due to increased CO₂ loading capacity (concentrated feed), reduced mass, and increased stripping pressure₅


Biphasic CO₂ Absorption Process with Multi-Stages of Liquid-Liquid Phase Separation (BiCAP)

Adds impacts on absorber to the impacts on stripper:

- Reduced viscosity with separation of rich, viscous phase improves mass transfer rate
- Lean phase to next packed bed improves kinetics
- Reduced mass of solvent to next packed bed

Advantages of Multi-Stage Phase Separation (LLPS) during CO₂ Absorption

Illustration of operating & equilibrium curves with 3 stages of CO₂ absorption-LLPS (the equilibrium curve that may change after each LLPS is not displayed in this illustration)

Modified operating curve allows for a higher mass transfer driving force and thus a faster absorption rate

BiCAP vs MEA and Other Biphasic Processes

Biphasic processes vs MEA

- Biphasic solvents have larger loading capacity for CO₂ stripping due to absorbed CO₂ concentrated in one phase as feed solution to the stripper
- Reduced mass and elevated P for CO₂ stripping
 - Reduced heat duty (low sensible heat and stripping heat)
 - Reduced compression work requirement

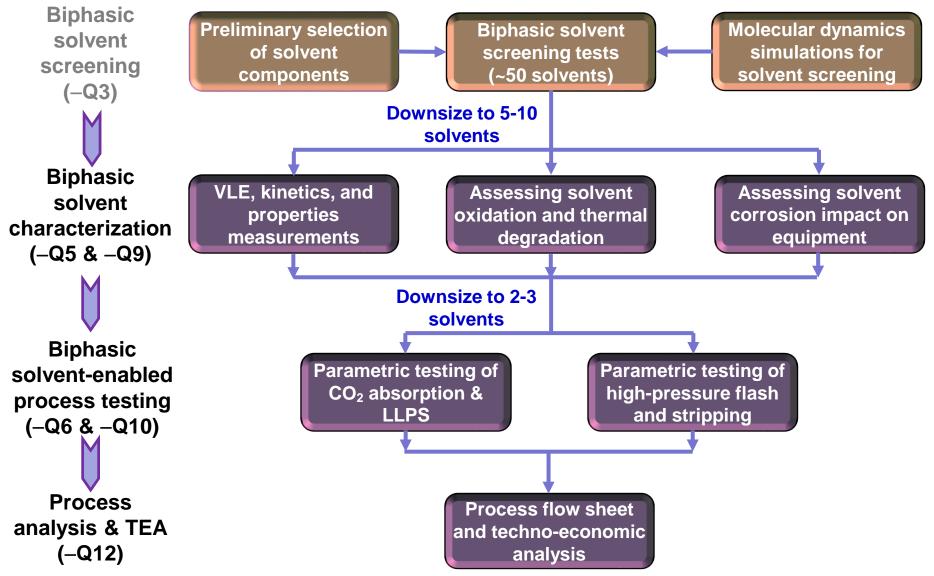
BiCAP vs other biphasic processes

Absorption process:

Multi-LLPS in BiCAP allows for low CO₂ loading and low viscosity throughout the absorber, resulting in a faster absorption rate and reduced absorber size

<u>Solvent:</u>

Phase transition behavior of BiCAP solvents are tunable, facilitated with the use of a unique solubilizer(s), allowing for a wide range of solvent component selection


Desorption process:

Desorption with a flash step to obtain high-pressure CO₂ and reduce compression requirements

Project On-Track and Initial Milestones Achieved

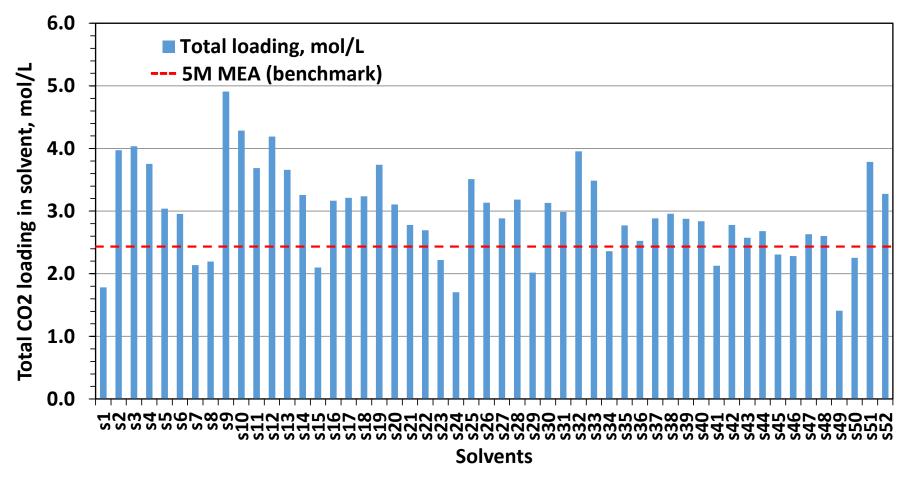
	SOPO BREAKOUT SCHEDULE START/END					BUDGET PERIOD 1							BUDGET PERIOD 2						
WBS	Lead	Description	Start	End	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9			Q12			
1.0		Project management and planning	10/01/15	09/30/18			•	Ì	•	•			•		,	•			
		Project management and planning		09/30/18															
	-	Briefings and reports		09/30/18															
2.0		Screening and characterization of biphasic solvents		06/30/16															
2.1	ISGS	Solvent screening tests on CO2 absorption and phase transition behavior	10/01/15	06/30/16															
2.2	ISGS	Solvent screening tests on CO2 desorption performance	10/01/15	06/30/16			, <u>a</u> .	╈┍╸											
2.3	ARI	Molecular simulation study for solvent screening	10/01/15	06/30/16 06/30/16		VIP	LE												
3.0		Measuring phase equilibria, absorption kinetics, & solvent properties		09/30/16				Α											
3.1	ISGS	Measurement of VLE data under absorption & desorption conditions	01/01/16	09/30/16															
3.2	ISGS	Measurement of CO ₂ absorption kinetics	04/01/16	09/30/16				с											
3.3	ISGS	Measurement of solvent properties	07/01/16	09/30/16															
4.0		Determining thermal and oxidation stabilities of the selected solvents	04/01/16	12/31/16															
4.1	ISTC	Oxidation stability of solvents under simulated absorption conditions	04/01/16	12/31/16															
4.2		Thermal stability of solvents under simulated desorption conditions	04/01/16	12/31/16					е										
5.0		Testing CO_2 absorption and phase separation in a packed-bed column	04/01/16	03/31/17						В									
5.1	ISGS	Modification of absorption column to incorporate multi-LLPS operation	04/01/16	09/30/16				d											
5.2	ISGS	Parametric testing of CO ₂ absorptionand LLPS in the packed-bed column	07/01/16	03/31/17						f									
5.3	ISGS	Rate-based modeling of CO ₂ absorption in the packed-bed column	10/01/17	03/31/17															
6.0		Development of a process sheet and preliminary process analysis	04/01/16	03/31/17															
6.1	Trimeric	Development of a conceptual process flow sheet	04/01/16	12/31/16															
6.2	Trimeric	Preliminary process analysis	07/01/16	03/31/17						g									
7.0		Testing CO_2 desorption in a high-pressure flash and stripping column	04/01/17	03/31/18										С					
7.1	ISGS	Modification of an existing packed-bed column by incorporating a flash ur	04/01/17	09/30/17								h							
7.2	ISGS	Parametric testing of high-pressure flash and stripping	07/01/17	03/31/18										j					
7.3	ISGS	Design modeling of CO ₂ desorption in the flash and stripping column	10/01/17	03/31/18															
8.0		Assessing the impact of solvent corrosion on the equipment	04/01/17	12/31/17															
8.1	ISTC	Assessing the impact of solvent corrosion on the equipment	04/01/17	12/31/17									i						
9.0		Technical and economic feasibility study	10/01/17	09/30/18												D			
9.1	Trimeric	Process simulation and mass & energy balance calculations	10/01/17	06/30/18															
9.2	Trimeric	Technical and economic feasibility study	01/01/18	09/30/18												k			

Project Scope and Technical Approach

Key Milestones and Success Criteria

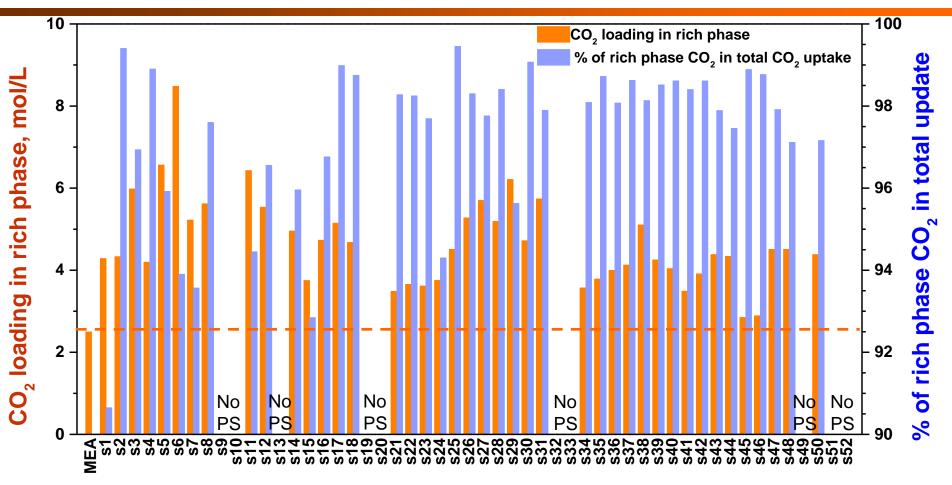
BP1 (by Q6):

Identify 2-3 top-performing solvents (based on phase transition & CO_2 enrichment behavior, CO_2 loading capacity, absorption kinetics, and viscosity)

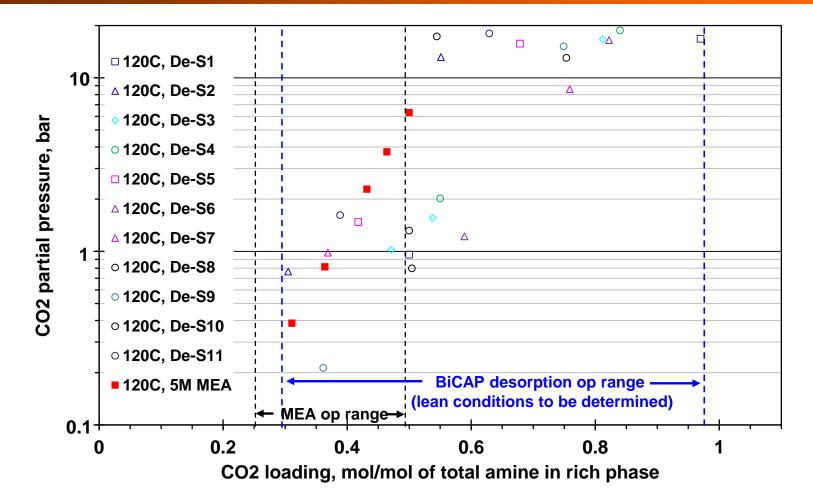

Complete lab testing of 2-3 solvents in an absorption column with multi-LLPS (CO₂ capacity and kinetics \geq 5 M MEA; each LLPS stage \leq 5 min; \geq 80% CO₂ enrichment in the rich liquid phase)

Demonstrates reliable operability of the multi-stage absorption & LLPS configuration during lab-scale testing

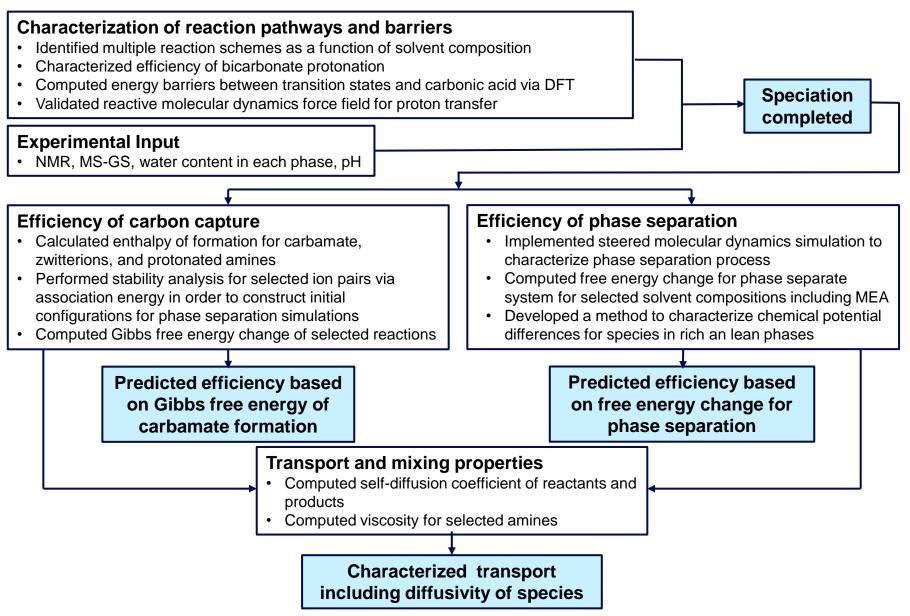
BP2: (by Q12)


Complete lab testing of 2-3 solvents in a flash / stripping system (\geq 5 bar stripping pressure; working capacity \geq 2 times that of 5M MEA) Initial techno-economic feasibility study shows significant progress toward achievement of DOE performance goals

Task 2. Solvent Screening Experiments: Absorption Capacity

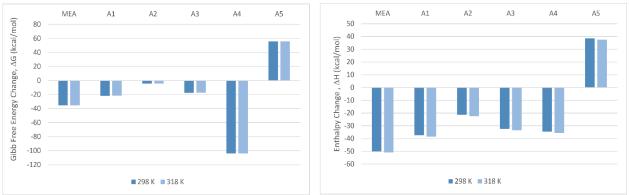

- Overall CO₂ capacity tested in gas impingers for 60 min of absorption under atmospheric CO₂ at 40°C:
- Most solvents achieved a comparable or slightly higher CO₂ loading than 5M MEA for absorption

Phase Transition Behavior


- Formation of dual phases and their volumes are tunable
- □ CO₂ loading is highly concentrated in rich phase (91-99% of total loading)
- Loading capacity of CO₂ desorption for most solvents is improved by 37-234% over 5M MEA (as only rich phase solution is used for regeneration)

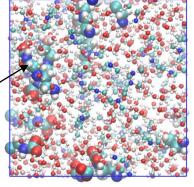
Desorption Pressure

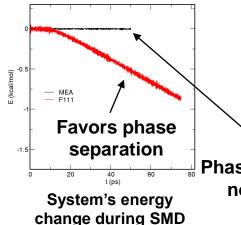
P_{CO2} = 0.7–10 bar at 120 °C at lean CO₂ loadings of ~0.3–0.5 mol/mol (determined to achieve 90% CO₂ removal), which is much higher than that of lean MEA (pressure at ~0.25 mol/mol)


Task 2. Molecular Dynamics Modeling for Solvent Screening: Methodology Flowchart

Molecular Dynamics Modeling for Efficiencies of Carbon Capture and Phase Separation

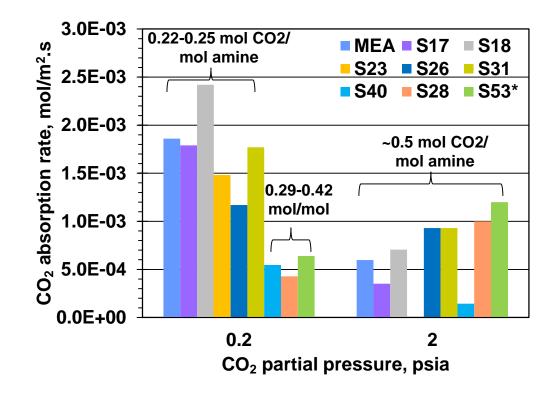
Carbon capture efficiency screening is performed via thermodynamic calculations using semi-empirical molecular orbital theory (18 reactions considered). Below is one example for the carbamate formation:


 $Am + CO_2 + Am \rightarrow AmCO_2^- + AmH^+$

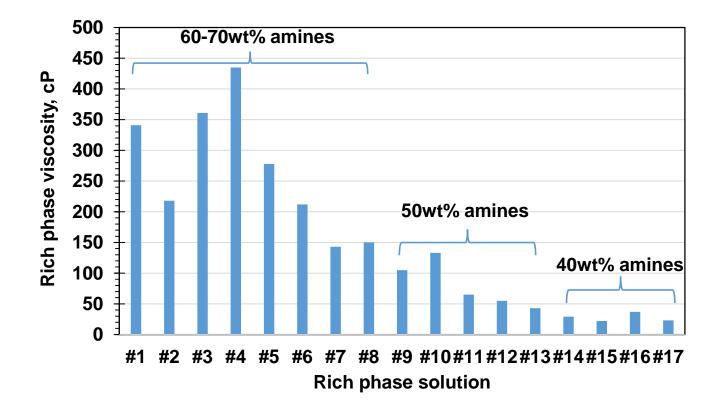

- ΔG < 0: spontaneous reactions; ΔH < 0: exothermic reactions
- Approach is general to screen any stoichiometry & reactions of interest.

Phase separation efficiency screening is performed via steered molecular dynamics simulation

Zwitterions and carbamates "steered" to separate inside the simulation domain

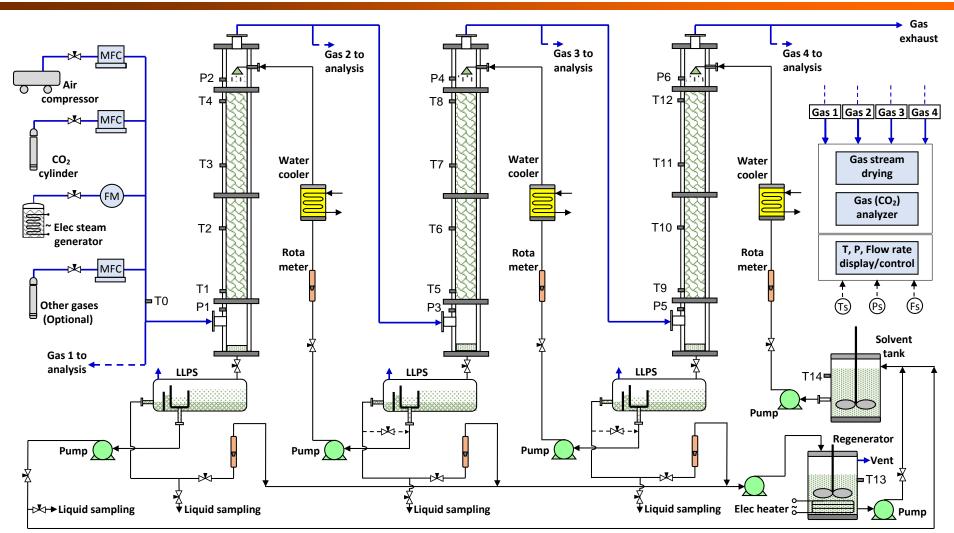

System F111 after SMD run

Work done by the system or constraint is a measure of the driving force behind the phase separation process


Phase separation not favored

Task 3. Absorption Rate

- Rate tests using both a stirred tank reactor (exemplary results displayed in plot above) and a wetted wall column reactor (work is ongoing)
- Rates tunable by addition of a promoter or selection of a different solubilizer
- * S18 (S17+promoter) and S31 (solubilizer different from S17)


Task 3. Viscosity Measurement and Optimization

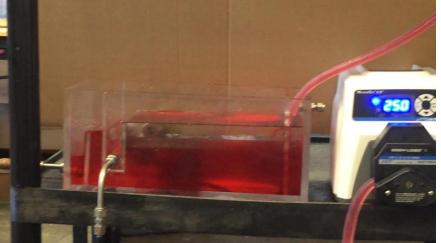
□ Lean phase viscosity < 9 cP (data not displayed)

Rich phase viscosity was successfully decreased from ~400 cP to ~30 cP by optimizing total solvent concentration and selecting suitable amine structures

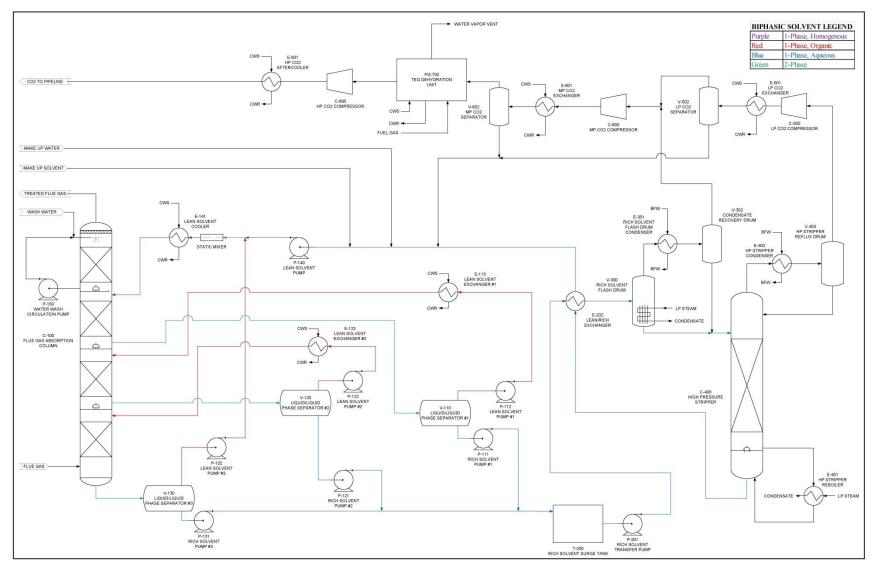
Task 5. A Lab Absorption System with 3-Stages of Packed Beds and LLPS Vessels Designed and Under Fabrication

- 3 stages (4-in ID, 7-ft packed-bed for each stage) arranged horizontally to accommodate lab ceiling limit
- 3 stages in one vertical column envisioned for practical use

Lab Prototype Phase Separation Vessel Achieved Efficient and Stable Separation

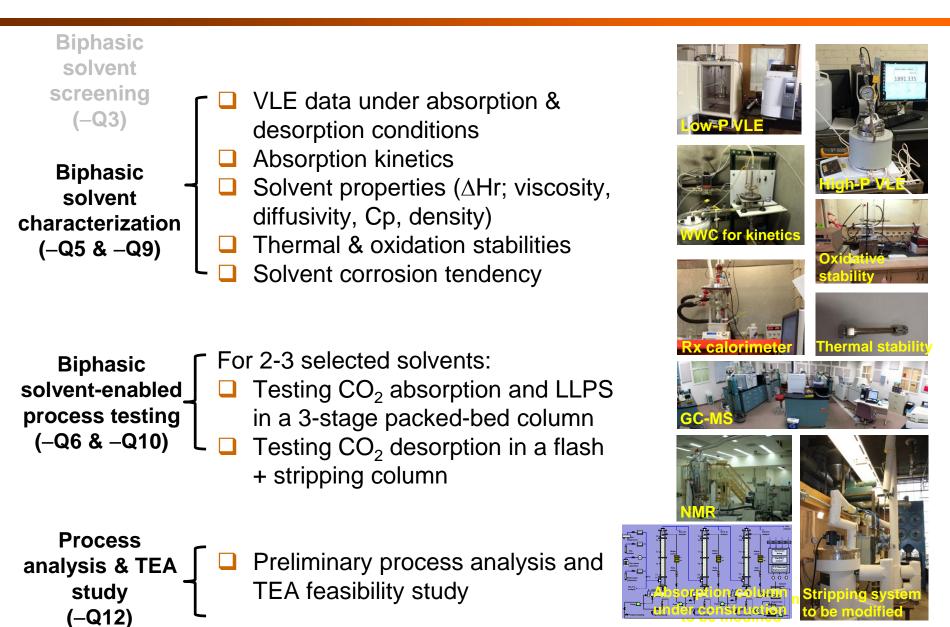

Phase separation vessel design

- Based on density difference (lean phase ~0.85 vs. rich phase ~1.1 g/cm³)
- ➢ Residence time ≤ 5 min (preferred at <1-2 min)</p>



(Liquid volume of 10 L, total volume of 15 L, liquid flow rate of 2 L/min)

- Actual separation performance
 - Separation efficiency better than the design
 - Able to maintain constant levels of both G-L and L-L interfaces
 - Both interface levels adjustable by adjusting their weir heights
 - Very stable operation



Task 6. Preliminary Process Flow Diagram Developed for BiCAP

Work underway to improve process/unit configuration, identify opportunities to minimize equipment items to reduce cost, and assess integration options into a power plant 2

Future Work Plan in this Project

Next-Stage Technology Development

- Current project is a laboratory development
- If process and TEA feasibility proven in the current project, next stage would be a close-loop bench or small pilot demo with simulated or actual flue gas
 - Rigorous process design and optimization modeling to enhance performance
 - > Analysis of technical risks and mitigation for scale-up
 - Identify industrial partners (design, construction, and testing)

Acknowledgements

DOE/NETL Project Manager: Andrew Jones University of Illinois:

- Kevin O'Brien (Co-PI; PhD, Director)
- Hong Lu (PhD, Chemical/Environmental Engineer)
- David Ruhter (MS, Lab Manager)
- > Yang Du (PhD, Chemical/Environmental Engineer)
- Qing Ye (PhD Student)
- Wei Zheng (PhD, Senior Chemist)
- Brajendra K Sharma (PhD, Senior Chemical Engineer)
- Viktoriya Gomilko (MS, Assistant Research Chemist)
- Joe Pickowitz (Environmental Engineer)
- Santanu Chaudhuri (PhD, Principal Research Scientist)
- Naida Lacevic (PhD, Lead Simulation Specialist)

Trimeric Corporation:

- Ray McKaskle (Subaward PI; P.E., Senior Chemical engineer)
- Andrew Sexton (PhD, P.E., Senior Chemical Engineer)
- Kevin Fisher (VP, P.E., Senior Chemical Engineer)